51 research outputs found

    SQUASH: Simple QoS-Aware High-Performance Memory Scheduler for Heterogeneous Systems with Hardware Accelerators

    Full text link
    Modern SoCs integrate multiple CPU cores and Hardware Accelerators (HWAs) that share the same main memory system, causing interference among memory requests from different agents. The result of this interference, if not controlled well, is missed deadlines for HWAs and low CPU performance. State-of-the-art mechanisms designed for CPU-GPU systems strive to meet a target frame rate for GPUs by prioritizing the GPU close to the time when it has to complete a frame. We observe two major problems when such an approach is adapted to a heterogeneous CPU-HWA system. First, HWAs miss deadlines because they are prioritized only close to their deadlines. Second, such an approach does not consider the diverse memory access characteristics of different applications running on CPUs and HWAs, leading to low performance for latency-sensitive CPU applications and deadline misses for some HWAs, including GPUs. In this paper, we propose a Simple Quality of service Aware memory Scheduler for Heterogeneous systems (SQUASH), that overcomes these problems using three key ideas, with the goal of meeting deadlines of HWAs while providing high CPU performance. First, SQUASH prioritizes a HWA when it is not on track to meet its deadline any time during a deadline period. Second, SQUASH prioritizes HWAs over memory-intensive CPU applications based on the observation that the performance of memory-intensive applications is not sensitive to memory latency. Third, SQUASH treats short-deadline HWAs differently as they are more likely to miss their deadlines and schedules their requests based on worst-case memory access time estimates. Extensive evaluations across a wide variety of different workloads and systems show that SQUASH achieves significantly better CPU performance than the best previous scheduler while always meeting the deadlines for all HWAs, including GPUs, thereby largely improving frame rates

    The Blacklisting Memory Scheduler: Balancing Performance, Fairness and Complexity

    Full text link
    In a multicore system, applications running on different cores interfere at main memory. This inter-application interference degrades overall system performance and unfairly slows down applications. Prior works have developed application-aware memory schedulers to tackle this problem. State-of-the-art application-aware memory schedulers prioritize requests of applications that are vulnerable to interference, by ranking individual applications based on their memory access characteristics and enforcing a total rank order. In this paper, we observe that state-of-the-art application-aware memory schedulers have two major shortcomings. First, such schedulers trade off hardware complexity in order to achieve high performance or fairness, since ranking applications with a total order leads to high hardware complexity. Second, ranking can unfairly slow down applications that are at the bottom of the ranking stack. To overcome these shortcomings, we propose the Blacklisting Memory Scheduler (BLISS), which achieves high system performance and fairness while incurring low hardware complexity, based on two observations. First, we find that, to mitigate interference, it is sufficient to separate applications into only two groups. Second, we show that this grouping can be efficiently performed by simply counting the number of consecutive requests served from each application. We evaluate BLISS across a wide variety of workloads/system configurations and compare its performance and hardware complexity, with five state-of-the-art memory schedulers. Our evaluations show that BLISS achieves 5% better system performance and 25% better fairness than the best-performing previous scheduler while greatly reducing critical path latency and hardware area cost of the memory scheduler (by 79% and 43%, respectively), thereby achieving a good trade-off between performance, fairness and hardware complexity

    The Blacklisting Memory Scheduler: Achieving high performance and fairness at low cost

    Full text link
    Abstract—In a multicore system, applications running on different cores interfere at main memory. This inter-application interference degrades overall system performance and unfairly slows down applications. Prior works have developed application-aware memory request schedulers to tackle this problem. State-of-the-art application-aware memory request schedulers prioritize memory requests of applications that are vulnerable to interfer-ence, by ranking individual applications based on their memory access characteristics and enforcing a total rank order. In this paper, we observe that state-of-the-art application-aware memory schedulers have two major shortcomings. First, ranking applications individually with a total order based on memory access characteristics leads to high hardware cost and complexity. Second, ranking can unfairly slow down applications that are at the bottom of the ranking stack. To overcome thes
    • …
    corecore